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Evaluation of Harmonic Coupling Weights in
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Abstract—When stimulated by a periodic stimulus, every com-
ponent of a possibly nonlinear periodicity preservation system os-
cillates periodically with the same period as the stimulus. Changes
in the harmonic structure of the the stimulus couples each input
harmonic to, in general, every response harmonic. Knowledge of
harmonic coupling weights (HCWs) allows model free character-
ization of effects of all small stimulus perturbation. This paper
develops foundational methodology for experimentally measuring
the HCWs. The on-frequency method uses small tickle tones at
harmonic frequencies to do this. The off-frequency method places
tickle tones adjacent to harmonic frequencies and is applicable to
PP systems that are locally frequency invariant. Memoryless non-
linear PP systems are an example where the approach works ex-
actly. The off-frequency method also requires fewer experiments.
In some cases, the off-frequency method can be extended to mea-
sure numerous HCWs in a single experiment. Some system types
such as the memoryless nonlinearity, require fewer experiments
than general PP systems. Methods to experimentally measure the
Hessian are also presented.

Index Terms—Af ne approximation, ef cient, harmonic cou-
pling, harmonics, nonlinear systems, power ampli er.

I. INTRODUCTION

A FFINE approximations to nonlinearities have found re-
cent popularity as ampli ers are are being driven into

nonlinear operation to achieve greater ef ciency. Of speci c
interest in coupling among harmonics imposed by the pertur-
bations around nonlinearities [1]–[24]. In previous papers [3],
we have outlined the af ne approximation and the relationships
among time, frequency, and mixed time frequency characteriza-
tions of af ne approximations of nonlinear periodicity preserva-
tion (PP) systems. The methodology, developed for single port
networks, was shown to be generalizable to multiport systems.
In this paper, we examine experimental procedures to measure
harmonic coupling weights in a PP nonlinear system around an
operating point. These weights are conventional phasors that
contain the relationship between stimulus and response ampli-
tudes albeit at generally different harmonics.
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In this paper we show the following.
1. The harmonic coupling weights (HCWs), equal to the
Fourier series Jacobian of the nonlinear transformation
about the operating point, can be determined from the
response of the PP system to small amplitude complex
sinusoid tickle tones.

2. Real sine and cosine tickle tones can also be used to exper-
imentally to nd the HCWs by superimposing the results
of two experiments. The procedure requires calculating the
perturbation differences in the stimulus and response.

3. When the PP system is a memoryless nonlinearity, a single
set of coupling coef cients is required. Other HCWs are
shifted versions. The response perturbation is determined
by a discrete convolution of Fourier coef cients [3].

4. When the PP system is locally frequency invariant and
there is no cross harmonic interference, an off-frequency
experiment allows placement of the tickle tones adjacent
rather than at the harmonic frequency. The amplitudes
can be measured directly rather than as the difference
between the original and perturbed response at a harmonic
frequency. A single off-frequency experiment replaces the
two required on-frequency experiments (sine and cosine).

5. More generally, tickle tones can be frequency multiplexed.
Under local frequency invariance constraints and no cross
coupling, a generalization of the off-frequency method al-
lows experimental measurement of numerous HCWs in a
single experiment.

6. All memoryless nonlinearities are globally frequency
invariant and display no cross harmonic coupling or
interference.

7. The tickle tone approach can be extended to measure
higher order derivative measures such as the second order
Hessian.

II. BACKGROUND

Let denote a nonlinear operator and

(1)

The signal is the stimulus and the response. The
af ne approximation for a small stimulus perturbation, ,
is [2], [3]

(2)

where

(3)
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There are versions of (3) that use the Fourier transforms of the
stimulus and response [3]. For example,

(4)

where the Fourier transform of is

(5)

and

(6)

The periodicity preservation (PP) class of nonlinear systems
[3] has the property that periodic stimulation will result in a pe-
riodic response with the same period, and fundamental fre-
quency . Temporally, the PP system is represented by
the operator with the constraint that the stimulus and response
in (1) are zero outside of a period, say the interval .
Each de nes a single period of a periodic function. For example
a periodic signal can be de ned by replication of a single
period.

(7)

Since is nonzero only over , (3) becomes

(8)

Let the vector denote the Fourier coef cients of the periodic
signal . That is

(9)

and the Fourier series [26] is

(10)

where is one for and is otherwise zero. From
(9), the Fourier coef cients are seen to be samples of the Fourier
transform of a single period of That is,

(11)

where, since is identically zero outside of the interval
, (5) can be written as

Likewise, let denote the Fourier coef cients of the peri-
odic signal . Then (8), expressed in terms of Fourier series
coef cients, is the harmonic cross coupling expression [3]

(12)

where and are the Fourier series coef cients of
. The harmonic coupling weights (HCWs),

measure the coupling strength between the th stimulus har-
monic and the th response harmonic. Only a nite number of
experiments can be performed and a nite number of HCWs
experimentally determined. Therefore, in lieu of (12), we
approximate the perturbation of Fourier series coef cients

(13)

Thus, with knowledge of the HCWs, the Fourier series coef -
cients of a response perturbation can be estimated for a small al-
beit arbitrary stimulus perturbation. In the sections to follow, we
illustrate a foundational methodology by which the harmonic
coupling weights of a model free PP system can be determined
experimentally.

III. MEASURING THE HARMONIC COUPLING WEIGHTS THE
ON-FREQUENCY METHOD

Consider the PP circuit in Fig. 1(a). The stimulus, with
Fourier coef cients , give rise to a periodic response with
coef cients . In Fig. 1(b), the th stimulus harmonic is
perturbed from to one with Fourier coef cients .

(14)

where is a small amplitude. The response to this small tickle
tone is a perturbation of to an af ne approximation of

. The single frequency tickle tone in (14) is complex and
not realizable, but serves as a useful pedagogical introduction
to experimental determination of HCWs. The segue into the use
of real tickle tones follows smoothly.
The tickle tone in (14) has a single Fourier series coef cient,

i.e.,

(15)

where the Kronecker delta, , is one for and is otherwise
zero. Substituting into (12), the response perturbation is

(16)

The output’s af ne approximation follows as .
The HCWs, can therefore be measured for all by
subtracting the Fourier series of the perturbed response from
the Fourier coef cients at the operating point, , and dividing
by . All coupling weights from the th input harmonic can be
thereby determined. The process is repeated for every stimulus
harmonic corresponding to different values of and all HCWs
are found. The result can then be used to estimate the response
to any small stimulus perturbation around the operating point.
Since the tickle tone is applied directly on the harmonic, this

approach and those similar are appropriately dubbed on-fre-
quency methods.
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Fig. 1. Illustration of the two methodologies for measuring the harmonic coupling weights. (a) The operating point mapping input Fourier coef cients, to
the output, . (b) For the on-frequency approach, a tickle tone, , is added onto the th harmonic. The increments at the th output harmonic are
approximations of . (c) For the off-frequency approach, a tickle tone is added a frequency interval from the th harmonic. If
the frequency invariant property holds, the terms a frequency interval from the th output harmonic are now approximations of .

A. Experiments Using Real Signals

The analysis in the previous section requires stimulus of the
PP system with complex sinusoids in (14). Using real signals,
the HCWs and can be found from two ex-
periments using two real tickle tone perturbations.
The rst perturbation of the input’s th harmonic uses the

stimulus

(17)

and the second uses the quadrature signal

(18)

The Fourier series coef cients for these signals are, respectively,

The af ne approximations of the system response from (12)
follow as

(19)

and

(20)

These two values are measured experimentally. From the two
measurements, we evaluate the HCWs

(21)

and

(22)

Measurements are repeated for all desired input harmonics cor-
responding to any values of and positive .

B. Harmonic Coupling for Harmonics With Negative Index

For negative , note that, for real signals, and

Likewise, for real , so that

Therefore, negative indices on the output Fourier coef cients
can be evaluated by conjugating the HCWs measured in (21)
and (22) [3].1

1As we have previously noted [3], the use of Wirtinger calculus expressions
as used, for example, in X parameters, is not necessitated.
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Fig. 2. The on-frequency appoximation using, as an input operating point, a
unit amplitude cosine with period . The PP system is a memoryless
nonlinear sigmoid given by (27). A value of is used. The effect, as
shown in (a), is to atten the cosine. From this information, the harmonic cou-
pling weights are estimated using the on-frequency method with .
Twenty positive frequency harmonics are used. The matrix of harmonic cou-
pling weights is therefore 41 41 (Thus, with reference to (13), )
A triangular wave perturbation is applied as shown in (a). The preturbation
ranges between a minimum of zero and maximum of 0.2. The true PP system
output for the perturbed cosinusoid is shown in (b) using a dashed line. The
output computed using the harmonic coupling af ne approximation is shown
by the solid line. Detail of the small shaded box in (b) is shown in (c). The max-
imum absolute error [the magnitude of the difference between the two curves
in (b)] is shown in (d). The overall RMS error using the af ne approximation is
0.0189.

C. Memoryless Nonlinearities
Amemoryless nonlinearity is a special case of the PP system.

We now show that experiments for a single sine and cosine stim-
ulus suf ce to completely specify all HCWs for a memoryless
nonlinearity. Let

(23)

where is a memoryless nonlinearity. Using the expression
for the Fourier series coef cient of the response results in

and differentiating gives

(24)

where

(25)

Then the HCW series in (12) becomes a discrete convolution.

(26)

where the asterisk denotes convolution. This is good news.
Since the HCWs, , are a function of , the
expression in (24) reveals the HCW matrix for memoryless
nonlinearities is Toeplitz and knowledge of one row suf ces to

de ne the entire matrix. Thus, only two single on-frequency
measurements, one for sine and one for cosine, are required to
de ne all HCWs from .
1) Example 1: Sigmoid Nonlinearity: Let the PP system be

characterized by a sigmoid parameterized by a positive number
.

(27)

For a cosine input, as illustrated in Fig. 2(a), the effect is a at-
tening of the cosine curve. The cosine, which is the input oper-
ating point, is perturbed by the small triangular wave shown in
Fig. 2(a). The true perturbed output (continuous line) is favor-
ably compared to the output estimated using HCW’s (dashed
line) in Fig. 2(b). Detail of the small shaded box in Fig. 2(b) is
shown in Fig. 2(c). The absolute error between the actual output
and the approximation is in Fig. 2(d). Further details are given
in the caption of Fig. 2.
2) Example 2: Polynomial Nonlinearities: Polynomial non-

linearities, a special case of the memoryless nonlinearity in (23),
have HCWs that can be characterized analytically. De ne the
th order polynomial

(28)

where the ’s are real coef cients. Thus,

and, for small input perturbations,

(29)

where we have discarded terms when . The
approximation to the output perturbation follows as

(30)

In terms of Fourier series coef cients, an equivalent statement
is

(31)

where the asterisk denotes discrete convolution and denotes
the fold autoconvolution of the Fourier series coef cients of
. This is a special case of the convolution in (26) with

(32)
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Fig. 3. Illustration of the off-frequency method of determining harmonic cou-
pling weights for a PP system. On top is the spectrum of the stimulus, and
the spectrum of the response, , is on the bottom. Both signals are periodic
with period and therefore have their harmonics at integer values of
. A tickle tone, , is added and appears in
the stimulus spectrum with weight at the two frequencies . If
the PP system, , obeys the harmonic noninterference and frequency invariant
constraints, the harmonic coupling weights, and
can be read at the output at frequencies and for all values
of .

This example will be continued in the description of the off-fre-
quency method of nding the af ne approximation for purposes
of illustrating frequency invariance.

IV. THE OFF-FREQUENCY METHOD

Finding the HCWs by placing the tickle tone a bit off-fre-
quency is dubbed, appropriately, the off-frequency method.
Then, as shown in Fig. 3(c), the responses to determine the
HCWs are likewise displaced in frequency. When a real co-
sine tickle tone is used, there is an additional advantage to
the off-frequency approach. A single experiment suf ces to
determine all of the parameters for a speci ed input harmonic
whereas the on-frequency method requires two.
The off-frequency method works with locally frequency-in-

variant PP systems. If a system is frequency-invariant [27]–[31],
then for all real values of ,

(33)

A system is locally frequency-invariant if (33) is approximately
true for small frequency shifts in the neighborhood about .
Let a tickle tone be applied at .

Then (3) becomes

(34)

From (6), this can be written as

(35)

Fourier transforming both sides gives [3]

(36)

Since, from (11), sampling the frequency domain gives Fourier
series coef cients, we have, for and .

(37)

This is an alternate description of the on-frequency method.
If the tickle tone, however, is moved to frequency
, the tickle tone becomes

(38)

and attention is focused on the response frequencies
. Then the off-frequency method assumes

(39)

This is true when the PP system is locally frequency-invariant.
Alternately, a tickle tone can be placed slightly below a har-

monic frequency. If

then, following the same reasoning, we measure the HCWs at
frequencies translated above each harmonic.

(40)

Likewise, the HCWs corresponding to input Fourier series co-
ef cients with negative indices can be measured at intervals
below each harmonic frequency. Speci cally, if , then

(41)

Implementing the off-frequency technique is illustrated in
Fig. 3.
Theorem: Memoryless nonlinearities are frequency invariant

in the sense of (33). Thus, for such systems, (39) is exact, i.e.,

(42)

Thus, for memoryless nonlinearities, the off-frequency ap-
proach gives the same answer as the on-frequency method.
Likewise, the approximations in (40) and (41) are replaced with
equalities.
The proof is in Appendix A.
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Fig. 4. A simulation illustration the off-frequency method of nding harmonic coupling weights. A period of the stimulus, where
, is shown in (a) with the tickle tone where and . The sum of the two signals is shown in (a)

with the dark bold line. The magnitude of the Fourier transform (spectrum) of this signal, shown in (b), is graphically indistinguishable from the spectrum of
except for the tickle tones with weight appearing at . (The signal has only odd harmonics.) Shown in (c) with the light dashed line is the response

. The solid line is the response to the perturbation which is . The magnitude
of the spectra of and , shown in (d), are again graphically indistinguishable except for the small terms at from each harmonic. The amplitude of
these terms are mined to (for positive frequencies) to obtain the harmonic coupling weights about the operating points of and .

A. Using Real Tickle Tones
When real tickle tones are used, the input has stimulus fre-

quencies at the two harmonic numbers . For the on-fre-
quency approach, the frequencies are at . The output
partials are estimating by examining the perturbations at
for . For the off-frequency method, the stimulus is ap-

plied at the two frequencies and the outputs
are examined at for nonnegative .
In lieu of the two tickle tones in (17) and (18), we now use a

single off-frequency tickle tone

(43)

Besides frequency invariance, an additional harmonic noninter-
ference constraint is now required. Speci cally, consider the re-
sponse to two perturbations

The constraint requires

and

In other words, the input perturbation of has no
effect on the response spectrum at the frequencies
and has no effect at . Then the
following harmonic coupling weights can thus be read directly
from the spectrum. Speci cally, we read

and

The off-frequency technique has the advantage of determining
both the harmonic coupling weights and
with a single experiment.
This is further illustrated in Fig. 3.
A simulation illustration using a hyperbolic tangent to model

an ampli er with saturation is shown in Fig. 4. Details are in the
caption.
1) Off-Frequency Method for Polynomial PP Systems: We

illustrate the off-frequency method for cases where the PP oper-
ator can be described by a polynomial in (28). Such systems, we
show, strictly adhere to the harmonic noninterference constraint.
We perturb the systemwith an th order harmonic tickle tone

at a frequency offset of Using a binomial expansion
about an operating point gives

(43a)

We show in Appendix B that

(44)

Therefore, from the single off-frequency experiment using a
single cosine tickle tone, both and can
be measured. For the on-frequency technique, two experiments



3030 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 59, NO. 12, DECEMBER 2012

Fig. 5. Illustration of simultaneous multiplexed off-frequency measurement of numerous harmonic coupling weights. As is shown in the top gure, the stimulus,
has cosinusoid tickle tones applied at frequencies there is the period of the periodic signals and . In this example, all of the

amplitudes are . If the PP system conforms to frequency invariant and cross interference constraints, then numerous harmonic coupling weights can be measured
from the response as shown in the bottom gure. At frequencies we measure . A simulation is shown in Fig. 6.

were needed: one for a cosine tickle tone and another with a
sine.

V. MULTIPLEXING OFF-FREQUENCY MEASUREMENTS

Within the limitations of the model, numerous harmonic cou-
pling weights can be measured simultaneously in a single mea-
surement. Speci cally, for some range of and , a single ex-
periment suf ces to measure and .
Let

where has a Fourier series in (10). The perturbation,
is assumed to be a trigonometric polynomial [26] with funda-
mental frequency , i.e.,

(45)

where is the number of harmonic coupling weights to be
measured. For the special case where all of the perturbations
are the same, i.e., , (45) becomes the superposition of
tickle tones

(46)

where the array function is de ned by [26]

As , approaches a string of
Dirac deltas [26].
Our goal is to use to determine

When is real, . We assume all of the fre-
quency components, as illustrated in Figs. 5 and 6, obey not
only the frequency noninterference constraint, but a cross fre-
quency noninterference constraint, e.g., the tickle tone compo-
nents at, say, , are assumed to not effect the response
perturbation for When this constraint is satis ed and
the frequency invariant property is suf ciently present, then the
stimulus component at with weight man-
ifests itself at the response frequencies with
amplitude . Likewise, the stim-
ulus terms appear in the response with weight

at frequencies . Thus, a
single experiment suf ces to measure numerous harmonic cou-
pling weights.

A. Polynomials

The multiplexing off-frequency approach can be derived an-
alytically for memoryless polynomials in (28) and shown to be
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Fig. 6. A simulation demonstrating the multiplexing tickle tones illustrated in Fig. 5. The input operating point is where . The input
is subjected to a nonlinearity, . Two tickle tones are added to the input equal to
where and . The signal for is passed through the nonlinearity to give the output, .
The magnitude of the Fourier transform (DFT) of the output, , is shown above. The three plots shown are of the same function, albeit over different
ranges. Some harmonic coupling weights are labeled in the middle plot. Note also that the Toeplitz nature of the HCWs is illustrated in this simulation. Since

, the HCWs and are the same in accordance to (24). Likewise, and are the same.

exact.2For the polynomial in (28) we obtain the perturbed re-
sponse linearity in (30). In Appendix C, we show the weight of
the spectrum of at frequency due the pertur-
bation in (45) is

(47)

Since can be measured from the tickle signal, a number
of harmonic coupling weights can be generated from a single
measurement. For polynomial nonlinearities, the multiplexing
off-frequency approach is mathematically exact.

VI. ESTIMATION OF THE HESSIAN
The accuracy of HCW’s in assessing PP systems has been

perfomed on a number of test cases [33]. A overarching the-
oretical measure of the extent to which the HCW approxima-
tion is accurate can be estimated by deviation from a second
order t at the operating point. Alternately, a Taylor series with
a second order termwill bemore accurate than an af ne approxi-
mation.Without elaboration, we note that higher order terms can
be experimentally estimated generalizing the technique used for
nding harmonic coupling coef cients.
While the harmonic coupling coef cients represent the Jaco-

bian of the operator, the second order measure is the Hessian
with elements

This can be estimated by placing stimulus tickle tones simul-
taneously at frequencies and and measuring
the perturbations at response frequencies . Extentions to
use of real tickle tones and off-frequency methods are possible.
2In practice, doing so is unnecessary because, for memoryless nonlinearities,

a single set of measurements is needed to specify the de ning function in (24).

When the second order Hessian can be estimated from
the difference between rst order Jacobian derivatives using
tickle tones with amplitudes and . Estimation of higher
order derivatives becomes more susceptable to measurement
uncertainty [26], [34].

VII. CONCLUSIONS
The impulse response of of an LTI system totally charac-

terizes the system. The response to any stimuli can be found
through a convolution of the impulse response with the stimulus
signal. Likewise, the harmonic coupling weights (HCWs) of a
PP system characterizes response to any small variation about a
xed point. The HWCs can be measured experimentally using
either on-frequency or off-frequency methods.

APPENDIX
Proof of (42) for Memoryless Nonlinearities: Using in-

verse Fourier transforms, the nonlinearity in (23) can be written
as

so that

Let be the Fourier transform of . Then
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for any . Therefore, when a PP system is a memoryless non-
linearity, (39) is true with no approximations

Q.E.D.
Proof of (44): From (43) we apply a binomial expansion

If , we can discard terms containing or higher. The
result is the af ne approximation

Then using Euler’s identity and the Fourier series expansion of
,

Substitute in the rst sum over and, in the second,
. Interchanging sums gives

Thus, from (24) and (32), we obtain (44).

The value of can thus be determined at by mea-
suring the value at frequency . Likewise, at the fre-
quency we can measure .

Proof of (47): Substituting the off-frequency Fourier series
in (45) into (30) gives

Substituting in the sum gives

The weights of this signal for exponential sinusoids at frequen-
cies gives (47).
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